21.11.2023

Марсоход секьюрити. Марсоход Curiosity. На Марсе найдены следы органических веществ


NASA запустила к Красной планете очередной марсоход. В отличие от проектов, связанных с этой планетой в нашей стране, американским исследователям удается довольно успешно осуществлять такие миссии. Напомним, российский аналог Curiosity – Фобос-Грунт потерпел фиаско из-за ошибки в программном обеспечении при выходе на околоземную орбиту.

Задачи миссии Curiosity. Curiosity это не просто марсоход. Проект осуществляется в рамках миссии Mars Science Laboratory и является платформой, на которой установлено множество научного оборудования, которое готовилось для решения нескольких задач.

Первая задача, которая стоит перед Curiosity, не оригинальна – поиск жизни на этой суровой планете. Для этого марсоходу нового поколения нужно будет обнаружить и изучить природу органических углеродных соединений. Найти такие вещества как водород, азот, фосфор, кислород, углерод и серу. Наличие таких веществ позволяет предположить о предпосылках зарождения жизни.

Кроме того, на Curiosity возлагают и другие задачи. Марсоход с помощью своего оборудования должен будет передать сведения о климате и геологии планеты, а так же провести подготовку к высадке человека.

Характеристики марсохода Curiosity. Curiosity имеет 3 метра в длину и 2,7 метра в ширину. Он оснащен шестью 51-см колесами. Каждое колесо работает от автономного электродвигателя. Передние и задние колеса помогут марсоходу повернуть в нужное направление. Благодаря особой конструкции и оптимальному диаметру, Curiosity способен преодолевать препятствие высотой 75 см и разгоняться до 90 метров в час.

Питание марсохода осуществляется за счет миниреактора. Заложенного в него плутония-238 хватит на 14 лет работы. От солнечных батарей решили отказаться из-за проблемы большого запыления атмосферы Марса.

Полет и посадка марсохода Curiosity. В качестве места посадки марсохода Curiosity был выбран кратер Гейла. Довольно ровное место, которое не должно преподнести проблемы.

На геостационарную орбиту марсоход вывела двухступенчатая ракета Atlantis-5 541. Откуда станция проследует до Марса. И тут начнется очень интересный момент – посадка Curiosity.

Атмосфера Марса довольна сложна. Ее плотные слои не позволяют посадочным двигателям корректировать этот процесс. Из-за чего была разработана довольно интересная технология, которая должна обойти эти трудности.

Во время входа в атмосферу Curiosity будет находиться в сложенном виде внутри специальной защитной капсулы. От высоких температур при вхождении в плотные слои атмосферы на большой скорости ее будет защищать специальное покрытие из углеродных волокон, пропитанных фенолформальдегидной смолой.

В плотной атмосфере Марса скорость аппарата снизится с 6 км/c до двукратной скорости звука. Сбрасываемые балласты откорректируют положение капсулы. Теплозащитное “покрывало” отстрелится и при скорости 470 м/c раскроется сверхзвуковой парашют.

При прохождении высоты 3,7 км над планетой, должна запуститься фотокамера, установленная в нижней части марсохода. Она снимет поверхность планеты, кадры высокой точности помогут избежать проблем с тем местом, куда Curiosity должен сесть.

Все это время парашют выполнял функцию тормоза, и на высоте 1,8 км над Красной планетой, марсоход отделяется от спускаемой установки, и дальнейшее снижение будет происходить при помощи платформы, которая снабжена посадочными двигателями.

Двигатели с переменной тягой корректируют положение платформы. В этот момент Curiosity должен успеть разложиться и подготовиться к посадке. Для того, чтоб этот процесс получился довольно плавным, была придумана еще одна технология – “летучий кран”.

“Летучий кран” это 3 троса, которые плавно опустят марсоход к поверхности планеты в то время как, платформа будет парить на высоте 7,5 метров.

Оборудование марсохода Curiosity. На марсоходе Curiosity установлено большое количество научного оборудования. Среди них есть и прибор, который разработали российские специалисты. Марсоход оснащен роботизированной рукой, которая довольно чувствительна. В нее вмонтированы бур, лопатка и другое оборудование, которое позволит собирать грунт и образцы пород.

На марсоходе установлено 10 приборов о некоторых из них, мы расскажем ниже.

MastCam – это камера, расположенная на высокой мачте над марсоходом. Она является глазами операторов, которые получая картинку на Земле, будут управлять аппаратом.

SAM – это масс-спектрометр, лазерный спектрометр и газовый хроматограф “в одном флаконе”, которые позволяют вести анализ проб грунта. Именно SAM должен найти органические соединения, азот, кислород и водород.

Роботизированная рука должна доставлять пробы в специальное место, на марсоходе, где их будет исследовать прибор SAM.

CheMin – еще один прибор для анализа пород. Он определяет химические и минеральные соединения.

CheCam – это самое интересное оборудование на борту марсохода Curiositi. Если говорить по-простому, то это лазер, которые способен растопить образцы грунта или скальных пород на расстоянии 9 метров от марсохода и исследовав пары, должен определить их структуру.

APXS – спектрометр который облучая образцы рентгеновским излучением и альфа-частицами сможет идентифицировать их. APXS располагается на роботизированной руке марсохода.

DAN – прибор разработанный нашими соотечественниками. Он способен определить наличие воды или льда даже на небольшой глубине под поверхностью планеты.

RAD – определит наличие радиоактивного излучения на планете.

REMS – чувствительная метеостанция на борту Curiosity.

Марсоход Curiosity это амбициозный проект человечества, который выведет нас на новый уровень изучения Марса. Посадка и изучение Красной планетой этим аппаратом, поможет ответить на два вопроса, которые давно не дают покоя человечеству: есть ли жизнь на Марсе и возможно ли колонизировать эту планету в ближайшем будущем.

Марсоход «Кьюриосити» (с англ. «Любопытство») приземлился в рамках миссии NASA Mars Science Laboratory в 2012 году на Марс. Марсоход представляет собой автономную химическую лабораторию в несколько раз больше и тяжелее предыдущих марсоходов «Спирит» и «Оппортьюнити». Задача аппарата -за несколько месяцев пройти от 5 до 20 километров и провести полноценный анализ марсианских почв и компонентов атмосферы. Для выполнения контролируемой и более точной посадки использовались вспомогательные ракетные двигатели. За несколько лет своей работы марсоход предоставил много интересных данных и сделал множество живописных снимков Красной планеты.

Специалисты, изучающие феномен НЛО, подозревают американское аэрокосмическое агентство NASA в обмане века. На одном из снимков, недавно полученном с поверхности Красной планеты марсоходом « » в объектив камеры попал какой-то странный летающий объект. По форме он напоминает летящего орла. Неужели NASA действительно нас обманывает, или у кого-то просто очень сильное воображение?

После мягкой посадки масса марсохода составляла 899 кг, из них 80 кг составляла масса научного оборудования.

«Кьюриосити» превосходит своих предшественников, марсоходы и , по размерам. Их длина составляла 1,5 метра и массу 174 кг (на научную аппаратуру приходилось лишь 6,8 кг), Длина марсохода «Кьюриосити» составляет 3 метра, высота с установленной мачтой 2,1 метра и ширина 2,7 метра.

Передвижение

На поверхности планеты марсоход способен преодолеть препятствия высотой до 75 сантиметров, при этом на твёрдой ровной поверхности скорость ровера доходит до 144 метров в час. На пересечённой местности скорость ровера доходит до 90 метров в час, средняя скорость, марсохода составляет 30 метров в час.

Источник питания Curiosity

Питание марсохода обеспечивает радиоизотопный термоэлектрический генератор (РИТЭГ), такая технология успешно применялась в спускаемых аппаратах и .

РИТЭГ вырабатывает электроэнергию в результате естественного распада изотопа плутония-238. Выделяющееся при этом тепло преобразуется в электроэнергию, также тепло используется для подогрева оборудования. Это обеспечивает экономию электроэнергии, которая будет использована для передвижения ровера и функционирования его инструментов. Диоксид плутония находится в 32 керамических гранулах, каждая имеет размер примерно в 2 сантиметра.

Генератор марсохода «Кьюриосити» принадлежит к последним поколениям РИТЭГов, он создан в компании Boeing, и носит название «Multi-Mission Radioisotope Thermoelectric Generator» или MMRTG. Хотя в его основе лежит классическая технология РИТЭГов, он создан более более гибким и компактным. Он производит 125 Вт электрической энергии (что составляет 0,16 лошадиной силы), перерабатывая приблизительно 2 кВт тепловой. Со временем мощность генератора будет снижаться, но за 14 лет (минимальный срок службы) его выходная мощность понизится только до 100 Вт. За каждый марсианский день MMRTG производит 2,5 кВт·ч, что значительно превышает результаты энергоустановок роверов «Спирит» и «Оппортьюнити» - лишь 0,6 кВт.

Система отвода тепла (HRS)

Температура в регионе, в котором работает «Кьюриосити», изменяется от +30 до −127 °C. Система, отводящая тепло, перегоняет жидкость по трубам, проложенным в корпусе MSL, общей длиной 60 метров, чтобы отдельные элементы марсохода находились в оптимальном температурном режиме. Другие способы обогрева внутренних компонентов ровера заключаются в использовании тепла, выделенного приборами, также излишков тепла от РИТЭГа. При необходимости HRS также может охлаждать компоненты системы. Установленный в марсоходе криогенный теплообменник, производства израильской компании Ricor Cryogenic and Vacuum Systems, сохраняет температуру в различных отсеках аппарата на уровне в −173 °C.

Компьютер Curiosity

Марсоход находится под управлением двух одинаковых бортовых компьютеров «Rover Compute Element» (RCE) с процессором RAD750 с частотой 200 МГц; с установленной радиационностойкой памятью. Каждый компьютер оснащен 256 килобайтами EEPROM, 256 мегабайтами DRAM, и 2 гигабайтами флэш-памяти. Такое количество в разы превышает 3 мегабайта EEPROM, 128 мегабайт DRAM и 256 мегабайт флэш-памяти, которые имели марсоходы «Спирит» и «Оппортьюнити».

Система работает под управлением многозадачной ОСРВ VxWorks .

Компьютер руководит работой марсохода: например, он может изменить температуру в нужном компоненте, Он управляет фотографированием, вождением ровера, отправкой отчётов о техническом состоянии. Команды на компьютер марсохода передаются из центра управления на Земле.

Процессор RAD750 - преемник процессора RAD6000, использовавшегося в миссии Mars Exploration Rover. Он может выполнить до 400 миллионов операций в секунду, а RAD6000 только до 35 миллионов. Один из бортовых компьютеров является резервным и примет управление в случае неисправности основного компьютера.

Марсоход оснащен инерциальным измерительным устройством (Inertial Measurement Unit), фиксирующем местоположение аппарата, оно применяется как инструмент для навигации.

Связь

«Кьюриосити» оснащен двумя системами связи. Первая состоит из передатчика и приёмника X-диапазона, которые позволяют марсоходу связаться непосредственно с Землёй, со скоростью до 32 кбит/с. Диапазон второй ДМВ (UHF), в ее основе лежит программно-определяемая радиосистема Electra-Lite, разработанная в JPL специально для космических аппаратов, в том числе, для связи с искусственными марсианскими спутниками. Хотя «Кьюриосити» может связаться с Землёй напрямую, основная часть данных ретранслируется спутниками, обладающими бóльшей пропускной способностью из-за бо́льшего диаметра антенн и большей мощности передатчиков. Скорости обмена данными между «Кьюриосити» и каждым из орбитальных аппаратов может доходить до 2 Мбит/с () и 256 кбит/с (), каждый спутник поддерживать связь с «Кьюриосити» в течение 8 минут в день. Также орбитальные аппараты обладают заметно большим временным окном для связи с Землёй.

Телеметрию при посадке могли отслеживать все три спутника, находящиеся на орбите Марса: «Марс Одиссей», «Марсианский разведывательный спутник» и . «Марс Одиссей» служил ретранслятором для передачи телеметрии на Землю в потоковом режиме с задержкой в 13 минут 46 секунд.

Манипулятор Curiosity

Марсоход оснащен трёхсуставным манипулятором длиной 2,1 метра, на котором установлены 5 приборов, их общая масса составляет около 30 кг. На конце манипулятора расположена крестовидная башня-турель (turret) с инструментами, способная поворачиваться на 350 градусов, Диаметр турели с набором инструментов составляет примерно 60 см, при движении марсохода манипулятор складывается.

Два прибора турели являются контактными (in-situ) инструментами, это APXS и MAHLI. Остальные приборы отвечают за добычу и приготовление образцов для исследования, это ударная дрель, щётка и механизм для зачерпывания и просеивания образцов масиансконго грунта. Дрель оснащена 2 запасными бурами, она делает в камне отверстия диаметром 1,6 сантиметра и глубиной 5 сантиметров. Полученные манипулятором материалы также исследуются приборами SAM и CheMin, установленными в передней части марсохода.

Разница между земной и марсианской (38 % земной) силой тяжести приводит к различной степени деформации массивного манипулятора, что компенсируется специальным программном обеспечением.

Мобильность марсохода

Как и в предыдущих миссиях, Mars Exploration Rovers и Mars Pathfinder, научное оборудование в «Кьюриосити» находится на платформу с шестью колёсами, каждое из которых оснащено своим электродвигателем. В рулении участвуют два передних и два задних колеса, что позволяет роверу развернуться на 360 градусов, оставаясь на месте. Размер колес «Кьюриосити» значительно превосходит те, что применялись в предыдущих миссиях. Конструкция колеса помогает роверу поддерживать тягу, если он застрянет в песках, также колёса аппарата оставляют след, в котором с помощью кода Морзе в виде отверстий зашифрованы буквы JPL (Jet Propulsion Laboratory).

Бортовые камеры позволяют марсоходу распознавать регулярные отпечатки колёс и определять пройденное расстояние.

  • ChemCam представляет собой набор инструментов для проведения дистанционного химического анализа различных образцов. Работа проходит следующим образом: лазер проводит серию выстрелов по исследуемому объекту. Затем проводится анализ спектра света, который излучила испарившаяся порода. ChemCam может изучать объекты, расположенные на расстоянии до 7 метров от него. Стоимость прибора составила около 10 миллионов долларов (перерасход 1.5 млн. долл.). В штатном режиме фокусировка лазера на объекте проходит автоматически.
  • MastCam: система состоящая из двух камер, и содержит множество спектральных фильтров. Возможно получение снимков в естественных цветах размером 1600 × 1200 пикселей. Видео с разрешением 720p (1280 × 720) снимается с частотой до 10 кадров в секунду и аппаратно сжимается. Первая камера — Medium Angle Camera (MAC), имеет фокусное расстояние в 34 мм и 15 градусное поле зрения, 1 пиксель равен 22 см при расстоянии 1 км.
  • Narrow Angle Camera (NAC), имеет фокусное расстояние в 100 мм, 5.1 градусное поле зрения, 1 пиксель равен 7,4 см при расстоянии 1 км. Каждая камера имеет по 8 Гб флеш-памяти, которая способна хранить более 5500 необработанных изображений; имеется поддержка JPEG-сжатия и сжатия без потери качества. В камерах есть функция автоматической фокусировки, которая позволяет им сфокусироваться на объектах, от 2,1 м до бесконечности. Несмотря на наличие у производителя конфигурации с трансфокатором, камеры не имеют зума, поскольку времени для тестирования не оставалось. Каждая камера имеет встроенный фильтр Байера RGB и по 8 переключаемых ИК-фильтров. По сравнению с панорамной камерой, которая стоит на Спирите и Оппортьюнити (MER) и получает чёрно-белые изображения размером 1024 × 1024 пикселя, камера MAC MastCam имеет угловое разрешение в 1,25 раза выше, а камера NAC MastCam — в 3,67 раза выше.
  • Mars Hand Lens Imager (MAHLI): Система состоит из камеры, закреплённой на роботизированной «руке» марсохода, используется для получения микроскопических изображений горных пород и грунта. MAHLI может снять изображение размером 1600 × 1200 пикселей и с разрешением до 14,5 мкм на пиксель. MAHLI имеет фокусное расстояние от 18,3 мм до 21,3 мм и поле зрения от 33,8 до 38,5 градусов. MAHLI имеет как белую, так и ультрафиолетовую светодиодную подсветку для работы в темноте или с использованием флуоресцентной подсветки. Ультрафиолетовая подсветка необходима для вызова излучения карбонатных и эвапоритных минералов, наличие которых позволяет говорить о том, что в формировании поверхности Марса принимала участие вода. MAHLI фокусируется на объектах от 1 мм. Система может сделать несколько изображений с акцентом на обработку снимка. MAHLI может сохранить необработанное фото без потери качества или же сделать сжатие JPEG файла.
  • MSL Mars Descent Imager (MARDI): Во время спуска на поверхность Марса, MARDI передавал цветное изображение размером 1600 × 1200 пикселей со временем экспозиции в 1,3 мс, камера начала съёмку с расстояния 3,7 км и закончила на расстояния 5 метров от поверхности Марса, снимала цветное изображение с частотой 5 кадров в секунду, съёмка продлилась около 2-ух минут. 1 пиксель равен 1,5 метра на расстоянии 2 км, и 1,5 мм на расстоянии 2 метра, угол обзора камеры — 90 градусов. MARDI содержит 8 Гб встроенной памяти, которая может хранить более 4000 фотографий. Снимки с камеры позволили увидеть окружающий рельеф на месте посадки. JunoCam, построенная для космического аппарата Juno, основана на технологии MARDI.
  • Alpha-particle X-ray spectrometer (APXS): Это устройство будет облучать альфа-частицами и сопоставлять спектры в рентгеновских лучах для определения элементного состава породы. APXS является формой Particle-Induced X-ray Emission (PIXE), который ранее использовался в Mars Pathfinder и Mars Exploration Rovers. APXS был разработан Канадским космическим агентством. MacDonald Dettwiler (MDA) — Аэрокосмическая канадская компания, которая строит Canadarm и RADARSAT, несут ответственность за проектирование и строительство APXS. Команда по разработке APXS включает в себя членов из Университета Гвельфов, Университета Нью-Брансуик, Университета Западного Онтарио, НАСА, Университет Калифорнии, Сан-Диего и Корнельского университета.
  • Collection and Handling for In-Situ Martian Rock Analysis (CHIMRA): CHIMRA представляет собой ковш 4х7 сантиметров, который зачерпывает грунт. Во внутренних полостях CHIMRA он просеивается через сито с ячейкой 150 микрон, чему помогает работа вибромеханизма, лишнее удаляется, а на просеивание отправляется следующая порция. Всего проходит три этапа забора из ковша и просеивания грунта. В результате остается немного порошка необходимой фракции, который и отправляется в грунтоприемник, на теле ровера, а лишнее выбрасывается. В итоге из всего ковша на анализ поступает слой грунта в 1 мм. Подготовленный порошок изучают приборы CheMin и SAM.
  • CheMin: Chemin исследует химический и минералогический состав, с помощью рентгеновского флуоресцентного инструмента и рентгеновской дифракции. CheMin является одним из четырёх спектрометров. CheMin позволяет определить обилие полезных ископаемых на Марсе. Инструмент был разработан Дэвидом Блейком в Ames Research Center НАСА и Jet Propulsion Laboratory НАСА. Марсоход будет бурить горные породы, а полученный порошок будет собран инструментом. Затем рентгеновские лучи, будут направлены на порошок, внутренняя кристаллическая структура полезных ископаемых отразится на дифракционной картине лучей. Дифракция рентгеновских лучей различна для разных минералов, поэтому картина дифракции позволит учёным определить структуру вещества. Информацию о светимости атомов и дифракционную картину будет снимать специально подготовленная E2V CCD-224 матрица размером 600х600 пикселей. У Кьюриосити имеется 27 ячеек для анализа образцов, после изучения одного образца ячейка может быть переиспользована, но анализ проводимый над ней будет иметь меньшую точность из-за загрязнения предыдущим образцом. Таким образом у ровера есть всего 27 попыток для полноценного изучения образцов. Ещё 5 запаянных ячеек хранят образцы с Земли. Они нужны чтобы протестировать работоспособность прибора в марсианских условиях. Для работы прибора нужна температура −60 градусов Цельсия, иначе будут мешать помехи от прибора DAN.
  • Sample Analysis at Mars (SAM): Набор инструментов SAM будет анализировать твёрдые образцы, органические вещества и состав атмосферы. Инструмент был разработан: Goddard Space Flight Center, Лаборатория Inter-Universitaire, Французскими CNRS и Honeybee Robotics, наряду со многими другими партнёрами.
  • Radiation assessment detector (RAD), «Детектор оценки радиации»: Этот прибор собирает данные для оценки уровня радиационного фона, который будет воздействовать на участников будущих экспедиций к Марсу. Прибор установлен практически в самом «сердце» ровера, и тем самым имитирует астронавта, находящегося внутри космического корабля. RAD был включен первым из научнах инструментов для MSL, ещё на околоземной орбите, и фиксировал радиационный фон внутри аппарата — а затем и внутри ровера во время его работы на поверхности Марса. Он собирает данные об интенсивности облучения двух типов: высокоэнергетических галактических лучей и частиц, испускаемых Солнцем. RAD был разработан в Германии Юго-западным исследовательским институтом (SwRI) внеземной физики в группе Christian-Albrechts-Universität zu Kiel при финансовой поддержке управления Exploration Systems Mission в штаб-квартире НАСА и Германии.
  • Dynamic Albedo of Neutrons (DAN): «Динамическое альбедо нейтронов» (ДАН) используется для обнаружения водорода, водяного льда вблизи поверхности Марса, предоставлен Федеральным Космическим Агентством (Роскосмос). Является совместной разработкой НИИ автоматики им. Н. Л. Духова при «Росатоме» (импульсный нейтронный генератор), Института космических исследований РАН (блок детектирования) и Объединённого института ядерных исследований (калибровка). Стоимость разработки прибора составила около 100 млн рублей. Фото прибора. В состав прибора входят импульсный источник нейтронов и приемник нейтронного излучения. Генератор испускает в сторону марсианской поверхности короткие, мощные импульсы нейтронов. Продолжительность импульса составляет около 1 мкс, мощность потока — до 10 млн нейтронов с энергией 14 МэВ за один импульс. Частицы проникают в грунт Марса на глубину до 1 м, где взаимодействуют с ядрами основных породообразующих элементов, в результате чего, замедляются и частично поглощаются. Оставшаяся часть нейтронов отражается и регистрируется приемником. Точные измерения возможны до глубины 50 - 70 см. Помимо активного обследования поверхности Красной планеты, прибор способен вести мониторинг естественного радиационного фона поверхности (пассивное обследование).
  • Rover environmental monitoring station (REMS): Комплект метеорологических приборов и ультрафиолетовый датчик предоставило Испанское Министерство Образования и Науки. Исследовательская группа во главе с Хавьером Гомес-Эльвира, Центра Астробиологии (Мадрид) включает Финский Метеорологический институт в качестве партнёра. Установили её на мачту камеры для измерения атмосферного давления, влажности, направления ветра, воздушных и наземных температур, ультрафиолетового излучения. Все датчики расположены в трёх частях: две стрелы присоединены к марсоходу, Remote Sensing Mast (RSM), Ultraviolet Sensor (UVS) находится на верхней мачте марсохода, и Instrument Control Unit (ICU) внутри корпуса. REMS даст новые представления о местном гидрологическом состоянии, о разрушительном влиянии ультрафиолетового излучения, о подземной жизни.
  • MSL entry descent and landing instrumentation (MEDLI): Основной целью MEDLI является изучение атмосферной среды. После замедления спускаемого аппарата с марсоходом в плотных слоях атмосферы теплозащитный экран отделился — в этот период были собраны необходимые данные о марсианской атмосфере. Эти данные будут использованы в будущих миссиях, дав возможность определить параметры атмосферы. Также их возможно использовать для изменения конструкции спускаемого аппарата в будущих миссиях на Марс. MEDLI состоит из трёх основных приборов: MEDLI Integrated Sensor Plugs (MISP), Mars Entry Atmospheric Data System (MEADS) и Sensor Support Electronics (SSE).
  • Hazard avoidance cameras (Hazcams): Марсоход имеет две пары чёрно-белых навигационных камеры, расположенных по бокам аппарата. Они используются для избежания опасности во время передвижения марсохода и для безопасного наведения манипулятора на камни и почву. Камеры делают 3D изображения (поле зрения каждой камеры — 120 градусов), составляют карту местности впереди марсохода. Составленные карты позволяют марсоходу избежать случайных столкновений и используются программным обеспечением аппарата для выбора необходимого пути преодоления препятствий.
  • Navigation cameras (Navcams): Для навигации марсоход использует пару чёрно-белых камер, которые установлены на мачте для слежения за передвижением марсохода. Камеры имеют 45 градусное поле зрения, делают 3D изображения. Их разрешение позволяет видеть объект размером в 2 сантиметра с расстояния 25 метров.