01.05.2024

При транслокации в хромосоме происходит. Транслокации хромосом: реципрокные и робертсоновские. Характеристика. Что важно помнить


Весь объем генетического материала заложен всего в 46 парах хромосом. А хромосомы, как известно из биологии, находятся в ядре клетки. Здоровый человек имеет кариотип из 23 пар диплоидных хромосом. То есть 46 ХХ — хромосомный набор женщины, а 46 ХУ — мужской набор хромосом. При разрыве какой-нибудь хромосомы, основной «носительницы» генетического кода, случаются различного рода нарушения.

Мутации присущи не только человеку. Небольшие изменения генного материала способствуют разнообразию проявления природы. При так называемой сбалансированной транслокации изменение в хромосомах происходит без потери информации и без лишнего дублирования. Чаще всего это случается при мейозе (делении хромосомы), кроме того, иногда части хромосом дублируются (происходит дупликация), и тогда последствия непредсказуемы. Но мы рассмотрим только робертсоновские транслокации, их особенности и последствия.

Робертсоновские транслокации — что это? Генные проблемы человечества

Вследствие разрыва хромосомы неподалеку от центромеры происходят структурные изменения в генетическом коде человека. Разрыв может быть единичным, а бывает и повторным. Одно плечо хромосомы после разрыва (чаще короткое плечо) теряется. Но попадаются случаи, когда разрыв происходит одновременно в 2 хромосомах, короткие плечи которых меняются местами. Бывает, что подвергаются транслокации только отдельные части плеча. Но такие короткие плечи в хромосомах акроцентрического типа (в которых центромера делит хромосому на более длинное и короткое плечи) никогда не несут жизненно важной информации. К тому же утеря таких элементов не так важна, поскольку этот наследственный материал копируется в других акроцентрических хромосомах.

Но когда отделившиеся короткие плечи срастаются с короткими плечами иного гена, а оставшиеся длинные также спаиваются между собой, то такая транслокация уже не является сбалансированной. Такие «перестановки» генетического материала - это и есть робертсоновские транслокациии.

Исследовал и описал такой вид транслокации У. Робертсон в 1916 году. И его именем и была названа аномалия. Робертсоновская транслокация может привести к развитию онкозаболевания, но может и никак не сказаться на внешнем виде и здоровье носителя. Однако ребенок в большинстве случаев, если один из родителей имеет такую транслокацию, рождается с отклонениями.

Насколько часто встречается мутация?

Благодаря усовершенствованию техники и развитию генетики как науки, сегодня можно заранее узнать, есть ли аномалии в кариотипе будущего ребенка. Теперь появилась возможность провести статистику: насколько часто появляются генные аномалии? По современным данным, робертсоновские транслокации встречаются у одного новорожденного из тысячи. Чаще всего диагностируется транслокация 21 хромосомы.

Небольшие хромосомные транслокации абсолютно ничем не угрожают самому носителю. Но когда затрагиваются важные элементы кода, ребенок может родиться мертвым или погибнуть через несколько месяцев, как, к примеру, бывает при Но синдром Патау встречается очень редко. Где-то 1 случай на 15 тысяч рождений.

Факторы, способствующие появлению транслокации в хромосомах

В природе существуют то есть ничем не вызванные. Но окружающая среда вносит свои коррективы в развитие генома. Некоторые факторы способствуют учащению мутационных изменений. Эти факторы принято называть мутагенными. Известны следующие факторы:

  • воздействие азотистых оснований;
  • чуждых ДНК биополимеров;
  • прием алкоголя матерью в период беременности;
  • влияние вирусов во время беременности.

Наиболее часто происходит транслокация из-за вредного воздействия облучения на организм. Влияет ультрафиолетовое излучение, протонное и рентгеновское излучение, а также гамма-лучи.

Какие хромосомы подвергаются изменениям?

Подвергаются транслокации хромосомы 13, 14, 15 и 21. Самая популярная и опасная транслокация — это робертсоновская транслокация между 14 и 21 хромосомами.

Если в результате мейоза образуется дополнительная хромосома (трисомия) у плода с такой транслокацией, ребенок родится с синдромом Дауна. Такой же прецедент возможен, если произошла робертсоновская транслокация между 15 и 21 хромосомами.

Транслокация хромосом группы D

Робертсоновская транслокация хромосом группы D затрагивает только акроцентрические хромосомы. Хромосомы 13 и 14 участвуют в транслокациях в 74% случаев и их называют несбалансированными транслокациями, которые зачастую опасных последствий для жизни не имеют.

Впрочем, есть одно обстоятельство, которое может сопутствовать подобным аномалиям. Робертсоновская транслокация 13, 14 у мужчин может привести к нарушению фертильности такого носителя-мужчины (хромосомный набор 45 ХУ). Из-за того, что вследствие утери обоих коротких плеч вместо 2 пар хромосом чаще остается только одна, имеющая 2 длинных, гаметы такого мужчины не могут дать жизнеспособного потомства.

Такая же робертсоновская транслокация 13, 14 у женщины также снижает ее возможность родить ребенка. Месячные присутствуют у таких женщин, и все же бывали случаи, когда они рожали здоровых детей. Но статистика все же показывает, что это редкие случаи. В основном их дети нежизнеспособны.

Последствия транслокаций

Мы уже выяснили, что некоторые структурные изменения вполне нормальны и не несут угрозы. Единичная робертсоновская транслокация определяется только благодаря анализам. Но повторная транслокация в наборе хромосом следующего поколения уже опасна.

Робертсоновская транслокация 15 и 21 в сочетании с иными структурными изменениями могут быть даже плачевными. Все последствия отдельных структурных изменений кариотипа опишем более подробно. Напомним, что кариотип — это присущий индивиду набор хромосом в ядре.

Трисомии и транслокации

Кроме транслокаций, генетики выделяют такую аномалию, как трисомия в хромосоме. Трисомия означает, что кариотип плода имеет триплоидный набор одной из хромосом, вместо положенных 2 копий иногда имеет место мозаичная трисомия. То есть триплоидный набор наблюдается не во всех клетках организма.

Трисомия в сочетании с робертсоновской транслокацией приводит к очень тяжелым последствиям: таким как синдром Патау, Эдвардса и более распространенный синдром Дауна. В некоторых случаях набор таких аномалий приводит к выкидышу на ранних сроках.

Синдром Дауна. Проявления

Нужно заметить, что транслокации с участием 21 и 22 хромосом более устойчивы. Такие аномалии не приводят к летальным исходам, не являются полулетальными, но просто приводят к отклонению в развитии. Так, в сочетании с робертсоновской транслокацией в кариотипе при анализе кариотипа плода — это явный «знак» синдрома Дауна, генетического заболевания.

Синдром Дауна характеризуется и физическими и умственными отклонениями. Прогноз жизни у таких людей благоприятен. Несмотря на пороки сердца и некоторые физиологические изменения скелета, их организм функционирует нормально.

Характерные признаки синдрома:

  • плоское лицо;
  • увеличенный язык;
  • много кожи на шее, собирающейся в складки;
  • клинодактилия (кривизна пальцев);
  • эпикантус;
  • порок сердца возможен в 40% случаев.

Люди с таким синдромом медленнее начинают ходить, произносить слова. И также учиться им сложнее, чем иным детям такого же возраста.

Все же они способны на плодотворную работу в обществе и при определенной поддержке и правильной работе с такими детьми в будущем они хорошо социализируются.

Синдром Патау

Синдром встречается реже, чем синдром Дауна, но пороков различного рода у такого ребенка очень много. Практически 80% детей с таким диагнозом погибает в течение 1 года жизни.

В 1960 году изучил эту аномалию и выяснил причины генетического сбоя Клаус Патау, хотя до него в 1657 году описал синдром Т. Бартолини. Риск подобных нарушений увеличивается у тех женщин, которые рожают ребенка после 31 года.

У таких детей многочисленные физические пороки сочетаются с тяжелым нарушением развития психомоторики. Характерны для синдрома:

  • микроцефалия;
  • аномальные кисти рук, часто образуются лишние пальцы;
  • низко посаженные уши неправильной формы;
  • заячья губа;
  • короткая шея;
  • узкие глаза;
  • явно «запавшая» переносица;
  • пороки почек и сердца;
  • расщелина губы или неба;
  • при беременности имеется только одна пуповинная артерия.

Небольшому числу выживших младенцев оказывается медицинская помощь. И они способны еще долго жить. Но врожденные аномалии всё-таки сказываются на характере жизни и ее непродолжительности.

Синдром Эдвардса

Трисомия хромосомы 18 на фоне транслокации приводит к Этот синдром менее известен. При таком диагнозе ребенок едва доживает до полугода. Закон естественного отбора не позволит развиваться существу с многочисленными отклонениями.

В целом количество различных пороков при синдроме Эдвардса — около 150. Наличествуют пороки развития кровеносных сосудов, сердца, внутренних органов. Всегда присутствует у таких новорожденных Возможны аномалии строения пальцев рук. Очень часто проявляется такая отличительная аномалия, как деформация стопы.

Какие анализы определяют аномалии в период внутриутробного развития?

Для проведения анализа на необходимо получить материал - клетки плода.

Анализов несколько. Осветим, как это все происходит.

1. Биопсия ворсин хориона. Проводится анализ на 10 неделе. Эти ворсины — являются непосредственной частицей плаценты. Эта частица биологического материала все расскажет о будущем плоде.

2. Амниоцентез. С помощью иглы берется несколько клеток плода и амниотическая жидкость. Они берутся чаще всего на 16 неделе беременности, и через несколько недель пара может получить детальные сведения о благополучии ребенка.

На такой анализ направляются матери, у которых риск родить ребенка с отклонениями повышен. Обычно на направляют те пары, у которых:

1) были беспричинные выкидыши;

2) пара долго не могла зачать ребенка;

3) в роду присутствовали связи близкородственного характера.

Такие молодые люди, возможно, имеют робертсоновские транслокации какой-то хромосомы. И поэтому они должны заранее сделать анализ на свой кариотип, чтобы знать, какие есть шансы выносить и родить здорового ребенка.

Транслокации – это хромосомные перестройки, в результате которых часть хромосомы переносится в другой локус той же хромосомы или в другую хромосому, но общее число генов не изменяется. Транслокации открыл К. Бриджес в 1923 г. у дрозофилы.

Внутрихромосомные транслокации возникают в результате образования трех разрывов и перенесения хромосомного сегмента в другой район той же хромосомы.

Межхромосомные реципрокные транслокации возникают в результате образования двух разрывов и обмена участками негомологичных хромосом.

Две хромосомы из разных пар

обмениваются фрагментами, в результате образуется гетерозигота по транслокации:

Реципрокные транслокации у дрозофилы обозначают следующим образом: например, Т(2;3)35А;71С означает, что транслокация (Т ) произошла между второй и третьей хромосомами, 35А и 71С – точки разрывов на цитологических картах этих хромосом.

Если образуются три разрыва и фрагмент хромосомы удаляется из одной хромосомы и встраивается в другую – это инсерционная транслокация . В результате расщепления в последующих поколениях возникает делеция в одной хромосоме и дупликация в другой.

Инсерционные транслокации у дрозофилы обозначают таким образом: например, Т(2;3)22А-23А;64Е , т.е. транслокация участка 22А-23А второй хромосомы в участок 64Е третьей .

Как же ведут себя хромосомы с реципрокными транслокациями во время мейоза? У гетерозиготы при конъюгации на стадии зигонемы образуется фигура в виде креста , так как транслоцированные участки притягиваются друг к другу (см. рис.). В стадии диплонемы крестообразные фигуры образуют сложные хиазмы . В диакинезе хиазмы сползают от центромер к концам хромосом и образуются кольца . Иногда хромосомы такого кольца перекручиваются и образуются фигуры в виде восьмерки . Только в этом случае получаются жизнеспособные сбалансированные гаметы , потому что к одному полюсу отходят либо обе измененные хромосомы, либо обе неизмененные.

Когда же хромосомы остаются в профазе I в видеколец , то образуются несбалансированные гаметы : в одних гены повторяются дважды, в других – они отсутствуют.

Вообще, для многих высших растений, например кукурузы, пиона, дурмана, колокольчика и др., гетерозиготные транслокации – это нормальное явление. Так, растение ослинник (энотера) гетерозиготно по транслокациям, которые затрагивают 12 из 14 хромосом.

Транслокации встречаются и у животных, но реже; например, у кузнечиков и скорпионов .

Есть особый вид транслокации, который по имени ученого, его открывшего, называется «робертсоновская транслокация».

В 1911 г. У.Робертсон (W.Robertson) обнаружил, что метацентрическая хромосома у одного из видов прямокрылых насекомых соответствует двум акроцентрическим хромосомам у другого вида и заключил, что в ходе эволюции метацентрики могут возникать за счет слияния акроцентриков . Такие слияния целых плеч хромосом стали называть робертсоновскими, или центрическими слияниями (транслокациями).


В 1934 году Н.П. Дубинин экспериментальным путем изменил число хромосом в кариотипе. Вначале с помощью робертсоновской транслокации он получил расу дрозофилы с тремя парами хромосом . Еще через два года была создана раса с пятью парами хромосом , у которой были три пары нормальных хромосом (Х, вторая и четвертая), а также две пары перестроенных, состоящих из частей 4-ой и 3-й хромосом.

Таким образом была показана возможность экспериментального преобразования кариотипа у животных как в сторону уменьшения числа пар хромосом, так и в сторону увеличения.

Логично было предположить, что робертсоновские слияния происходят и в ходе эволюции. В 1960 г. П. Полани (P. Polani) с соавторами показали, что синдром Дауна у человека может возникать и в результате робертсоновской транслокации.

Было установлено также, что у человека 23 пары хромосом, а у крупных человекообразных обезьян – 24. Оказалось, что два плеча крупной второй хромосомы человека соответствуют двум разным хромосомам обезьян (это хромосомы 12 и 13 у шимпанзе и 13 и 14 у гориллы и орангутана).

Каков же механизм центрического слияния ? Известно, что центромера не может разрываться с последующей сшивкой фрагментов. Было предложено 2 механизма. Один из них : неравная транслокация двух акроцентрических хромосом с потерей образовавшегося маленького метацентрика (см. рис.).

По другому механизму может произойти соединение двух акроцентрических хромосом в результате тандемного слияния двух центромер . При этом две близко расположенные центромеры функционируют как одна, или же одна из двух центромер инактивируется. Это – С-С соединение хромосом (центромера к центромере). Примером С-С соединения является вторая хромосома человека.

Рис.3 Типы хромосомных перестроек и их последствия

Однако бывает так, что в семье фенотипически здоровых родителей возникает закономерный риск рождения ребёнка с хромосомной патологией. И связано это, как правило, с носительством одним из супругов сбалансированной транслокации хромосом.

Транслокацией называется перенос генетического материала с одной хромосомы на другую. Реципрокными транслокациями считаются транслокации, при которых разрывы возникают одновременно в двух хромосомах и последние обмениваются образовавшимися свободными сегментами. Чаще всего в такую перестройку вовлекаются длинные плечи 11 и 22 хромосом, но могут быть задействованы и другие хромосомы. При этом изменяется порядок сегментов на хромосоме, но потери генетического материала не возникает, и, соответственно, фенотипически данный вид перестроек никак себя не проявляет. Такой человек прекрасно социально адаптирован, ведёт обычный образ жизни и, как правило, ничего не подозревает о том, что он является носителем хромосомной перестройки. Однако подобное изменение хромосом может приводить к образованию несбалансированных с точки зрения своего хромосомного набора гамет, последнее ведёт к закономерному риску рождения у таких людей детей с хромосомной патологией.

На рис. 3 представлен особый вид реципрокных транслокаций – робертсоновская транслокация. При данном виде транслокации две акроцентрические хромосомы теряют короткие плечи, а длинные плечи сливаются друг с другом, формируя вместо двух одну химерную хромосому. В коротких плечах акроцентрических хромосом в основном локализуются гены рРНК, которые многократно дублируются в других акроцентрических хромосомах. Поэтому потеря коротких плеч акроцентрических хромосом не сопровождается какой-либо существенной симптоматикой. В данном случае в перестройке задействованы 14-я и 21-я хромосомы, что ведёт к формированию разного типа гамет, среди которых часть несёт добавочный материал 21-ой хромосомы. При оплодотворении такой яйцеклетки сперматозоидом с нормальным хромосомным набором произойдёт закладка эмбриона с так называемым транслокационным вариантом синдрома Дауна.

В случае участия в робертсоновской транслокации двух 21-х хромосом, риск рождения ребёнка с синдромом Дауна у носителя перестройки достигает 100%.

Глава 2. Примеры наиболее частых хромосомных патологий

2.1. Некоторые общие черты в клинике хромосомных заболеваний

Хромосомные болезни выражаются в виде синдромов с множеством аномалий в развитии человека. Каждый синдром, обусловленный определенным нарушением кариотипа пораженного лица, имеет характерные симптомы, но существуют и некоторые общие особенности, типичные для каждого хромосомного заболевания.

К ним относятся:

а) дисморфизм, который проявляется в виде самых разнообразных конкретных изменений, но закономерен при всех хромосомных заболеваниях;

б) нарушение интеллектуального развития, которое в большинстве случаев значительно отстает;

в) развитие множественных аномалий скелета и внутренних органов.

Таким образом, эти симптомы, независимо от разнообразия форм и степени их проявления, являются характерными для всех хромосомных заболеваний.

Указанные выше общие особенности хромосомных заболеваний в сочетании с семейным анамнезом, в котором имеются данные о спонтанных абортах, о мертворожденных, о страданиях наследственными заболеваниями других членов семьи, дают серьезные основания для того, чтобы думать об их генезе и предпринимать соответствующие исследования для выявления хромосомных заболеваний.

Установление диагноза хромосомного заболевания имеет большое практическое значение. Особенно важно определить - является ли оно врожденным или наследственным. Используя возможности пренатальной диагностики, следует определить нормален ли плод или имеет отклонения в кариотипе и в зависимости от этого принять решение об абортировании беременной женщины. Это позволяет ограничить рождение дефектных детей. Такие возможности ясно показывают большое социальное и медицинское значение своевременной и точной диагностики каждого хромосомного заболевания.

Транслокация включает обмен хромосомными сегментами между двумя, обычно негомологичными, хромосомами. Есть два основных типа транслокаций: реципрокные и робертсоновские.

Реципрокные транслокации происходят вследствие разрывов в негомологичных хромосомах, со взаимным (реципрокным) обменом поврежденными сегментами. Обычно в транслокации участвуют только две хромосомы, и поскольку обмен реципрокный, общее количество хромосом не изменяется. Описаны редко встречающиеся комплексные транслокации, включающие три или более хромосом.

Реципрокные транслокации сравнительно часты и обнаруживаются приблизительно у 1 из 600 новорожденных. Такие транслокации обычно безвредны, хотя их чаще встречают у госпитализированных больных с умственной отсталостью, чем в общей популяции. Они попадают в поле зрения врачей или при пренатальной диагностике, или при кариотипировании родителей ребенка с несбалансированной транслокацией.

Сбалансированные транслокации чаще, чем в общей популяции, выявляют у пар с двумя и более спонтанными выкидышами и у .

Когда хромосомы носителя сбалансированной реципрокной транслокации спариваются в мейозе, формируется фигура, названная тетравалентом. В анафазе хромосомы обычно отделяются от этой конфигурации одним из трех способов, описанных как альтернативная, совместная-1 и совместная-2 сегрегации. Альтернативная - обычная мейотическая сегрегация, полученные гаметы имеют или нормальный хромосомный состав, или две реципрокных хромосомы; оба типа гамет сбалансированы.

При первом типе совместной сегрегации гомологичные центромеры расходятся в делящиеся дочерние клетки (как и в норме в делении мейоза I), при втором, редко встречающемся типе, гомологичные центромеры переходят в одну дочернюю клетку. Как 1-й, так и 2-й тип совместной сегрегации приводит к формированию несбалансированных гамет.

Дополнительно к описанным примерам 2:2 сегрегации (т.е. две хромосомы, расходящиеся к каждому полюсу) сбалансированные транслокации могут также сегрегировать в соотношении 3:1, приводя к гаметам с 22 или 24 хромосомами. Хотя моносомии у людей встречают редко, существование трисомий вполне возможно. Такое расхождение (3:1) у мужчин-носителей сбалансированных транслокаций наблюдают в 5-20% сперматозоидов, в зависимости от вида транслокации.


Робертсоновские транслокации хромосом

Этот тип перестройки включает две акроцентрические хромосомы, соединенные в области центромеры, с утратой коротких плеч. Полученный в результате сбалансированный кариотип имеет только 45 хромосом, включая транслоцированную, состоящую из длинных плеч двух хромосом. Поскольку короткие плечи всех пяти пар акроцентрических хромосом содержат многочисленные копии генов рРНК, потеря коротких плеч двух акроцентрических хромосом неопасна.

Робертсоновские транслокации могут быть как моноцентрическими, так и псевдодицентрическими, в зависимости от позиции точечного разрыва в каждой акроцентрической хромосоме.

Хотя обнаружены робертсоновские транслокации , включающие все комбинации акроцентрических хромосом, сравнительно часто встречают две из них (13q14q и 14q21q). Транслокацию, объединяющую 13q и 14q, наблюдают примерно у 1 человека из 1300, это самая частая хромосомная перестройка у человека. Описаны редкие гомозиготы по транслокациям 13q14q; это фенотипически нормальные люди, имеющие только 44 хромосомы с отсутствием нормальных 13 и 14 пар хромосом, замененных двумя транслоцированными.

Инсерция - нереципрокный тип транслокации, когда сегмент, удаленный из одной хромосомы, включается в другую хромосому, в обычной или инвертированной ориентации. Поскольку для этого необходимо три разрыва хромосом, инсерций встречают сравнительно редко. Аномальное расхождение хромосом у носителей инсерций может приводить к рождению ребенка с дупликацией или делецией задействованного сегмента, также возможны нормальный кариотип и сбалансированное носительство.
В среднем риск рождения аномального ребенка высокий, вплоть до 50%, поэтому в таких случаях показана пренатальная диагностика.


Робертсоновские транслокации, или центрические слияния акро- центрических хромосом, являются одним из наиболее распространенных типов хромосомных аномалий у человека. По некоторым данным, их частота составляет 1:1000 новорожденных . Их носители фенотипически нормальны, однако риск самопроизвольных выкидышей и рождения детей с несбалансированным кариотипом существенно варьирует в зависимости от хромосом, вовлеченных в слияние, а также от пола носителя.
В мейозе транслоцированная хромосома и ее два нормальных гомолога формируют тривалент . В зависимости от типа сегрегации образуются 2 варианта генетически сбалансированных гамет (одна с перестройкой и одна с нормальным набором хромосом) и 4 варианта несбалансированных гамет (рис. 6.4). Несбалансированные гаметы в случае оплодотворения приводят либо к моносомии, летальной уже на ранних стадиях, либо к трисомии, фенотипические проявления которой зависят от природы лишней хромосомы.
Анализ частот различных типов сегрегации проводится, как правило, на основе изучения хромосомного набора у потомства до или после рождения. Так, при анализе доимплантационных зародышей установлено, что преобладающей и в оогенезе и в сперматогенезе (70 и

Рис. 6.4. Схема образования гамет у носителя сбалансированной Робертсоновской транслокации между негомологичными хромосомами и варианты зигот после оплодотворения нормальными гаметами

90 % соответственно) является альтернативная (чередующаяся) сегрегация, приводящая к нормальным и сбалансированным гаметам. При этом зиготы с хромосомным дисбалансом образуются, как правило, в результате смежной-1 сегрегации, которая происходит в три раза чаще в оогенезе, чем в сперматогенезе.
Очевидно, более точная информация может быть получена при непосредственном анализе гамет у носителей Робертсоновских транслокаций. Установлено, что в профазе мужского мейоза Робертсоновские транслокации преимущественно формируют тривалент в c/s-конфигу- рации , которая способствует чередующемуся (альтернативному) типу сегрегации и доминирует независимо от хромосом, вовлеченных в центрическое слияние (72,2-96,7 % случаев) .
Методом гетерологичного оплодотворения яйцеклеток хомячка сперматозоидами от 6 носителей Робертсоновских транслокаций установлено, что отношение несбалансированных наборов хромосом к сбалансированным и нормальным соответствует распределению 3:1 .

Собственные исследования анализа хромосомного набора сперматозоидов от пациента с Робертсоновской транслокацией 45,XY,der(13;14) позволяют также отметить преобладание чередующегося типа сегрегации хромосом, при этом частота несбалансированных сперматозоидов составила 8,77 %, а частота сбалансированных сперматозоидов почти в 2 раза превышала частоту сперматозоидов с нормальным кариотипом (40,35 и 26,31 % соответственно) . Аналогичные выводы были сделаны и другими авторами при анализе сперматозоидов от пациента с центрическим слиянием хромосом der(13;14) и анализа кариотипов новорожденных от отцов с Робертсоновскими транслокациями . Тем не менее, механизмы презиготического отбора гамет в пользу сбалансированных сперматозоидов, несущих der(13;14), остаются неясными.
Важной особенностью поведения Робертсоновских транслокаций в сперматогенезе является ассоциация тривалента с половым бивалентом XY, которая часто наблюдается на стадии пахитены у носителей der(13;14), а также у носителей других Робертсоновских транслокаций, в которые вовлечены акроцентрические хромосомы группы G . При этом следует отметить, что нередко такая устойчивая ассоциация приводит к блоку мейоза на стадии пахитены и сопровождается выраженными нарушениями сперматогенеза .
Как и при реципрокных транслокациях, частота возникновения несбалансированных гамет оказывается существенно выше частоты несбалансированных кариотипов у потомков (ранних эмбрионов, плодов или новорожденных) .
В нашем исследовании при кариотипировании плодов, у которых один их родителей был носителем Робертсоновской транслокации, в 70 % установлен сбалансированный, в 7 случаях - нормальный и в 6 - несбалансированный кариотип (табл. 6.1).
Интерес представляет сравнительный анализ роли различных Робертсоновских транслокаций в возникновении анеуплоидии у потомства. Как известно, большинство Робертсоновских транслокаций у человека (74 %) затрагивают хромосомы 13 и 14 . В структуре обращаемости на пренатальную диагностику лидерами оказываются носители der(13;14) и der(14;21) . Из супружеских пар с Робертсоновскими транслокациями, по нашим данным, они составили 12 и 9 соответственно (табл. 6.2).
Таблица 6.2. Результаты пренатальной диагностики в семьях носителей Робертсоновских транслокаций


Тип транслокации

Носитель

Собственные результаты

По

Кариотип плода

Кариотип плода

Число
случаев

Нор
мальный

Сбаланси
рованный

Несба-
лансиро
ванный

Число
случа
ев

Несба-
лансиро
ванный

13q13q

Неиз
вестно

1

0

0

1

-

-

13q14q

Мать

8

0

8

0

157

0

Отец

4

0

4

0

73

0

Неиз
вестно

3

0

3

0

-

-

13q15q

Мать

1

1

0

0

-

-

13q21q

Мать

1

0

1

0

20

2

Отец

-

-

-

-

11

0

13q22q

Мать

1

1

0

0

-

-

Отец

2

0

1

1

-

-

14q21q

Мать

7

2

3

2

137

21

Отец

2

2

0

0

51

0

Неиз
вестно

2

1

0

1

-

-

14q22q

Мать

2

0

2

0

-

-

Отец

1

1

0

0

-

-

15q21q

Мать

2

1

1

0

9

1

Отец

-

-

-

-

5

0

15q22q

Мать

-

-

-

-

-

-

Отец

1

0

1

0

-

-

21q21q

Неиз
вестно

1

0

0

1

-

-

21q22q

Мать

1

1

0

0

19

3

Отец

-

-

-

-

30

0

Всего


40

10

24

6

512

27

Любопытно, что der(13;14) наследуется независимо от родительского происхождения и обнаруживается только в сбалансированном кариотипе (табл. 6.2). В то же время, наследование t(14;21) от матери нередко сопровождается трисомией 21, тогда как при отцовском носи- тельстве t(14;21) случаи несбалансированного кариотипа у потомства не зарегистрированы (табл. 6.2). Полученные данные хорошо соответствуют обобщенным результатам других исследований .
Обращает на себя внимание явное преобладание в потомстве носителей плодов с Робертсоновскими транслокациями над плодами с нормальным кариотипом (табл. 6.2). При этом наследование продуктов центрического слияния происходит чаще, когда носительницей перестройки является мать . Является ли это случайным или отражает какие-то имманентные особенности сегрегации транслоцированных хромосом в женском мейозе, как ранее было показано в экспериментах на лабораторных мышах-носителях Робертсоновских транслокаций , остается неизвестным и заслуживает дальнейшего изучения.
На основе общей частоты несбалансированных гамет, специфичности хромосом, вовлеченных в центрические слияния, можно рассчитать риск рождения жизнеспособных детей с несбалансированным кариотипом. Поскольку у мужчин-носителей транслокаций 13;14, 14;21, 21;22 дисомия по хромосомам 13 и 21 составляет примерно 1/3 от всех несбалансированных сперматозоидов (максимальная частота 26,5 %), теоретический риск рождения ребенка с трисомией 13 или 21 составляет 0-10 % . Если транслокация 14;21 присутствует у матери, то вероятность рождения ребенка с трисомией 21 возрастает и оценивается в 10-15 % .
В случае центрического слияния гомологичных хромосом прогнозы намного более мрачные. Теоретически Робертсоновские транслокации возможны для всех 5 акроцентрических аутосом групп D и G. Однако более распространенными являются транслокации 21;21 и реже 13;13 и 22;22. Риск рождения детей с трисомией 21, 13 и 22 при соответствующих транслокациях будет оцениваться в 100 %. Такая ситуация объясняется образованием только двух типов гамет: 1) несущих транслокацию и, следовательно, дисомных по аберрантным хромосомам; 2) нуллисомных по этим хромосомам (рис. 6.5). Образующиеся в результате оплодотворения таких гамет зиготы с моносомией по любой из


Рис. 6.5. Схема образования гамет у носителя Робертсоновской транслокации между гомологичными хромосомами (или изохромосомами по длинным плечам акро-центрических хромосом групп D и G) и варианты зигот после оплодотворения нормальными гаметами

хромосом групп D и G, а также с трисомией 14 и 15 при транслокациях 14;14 и 15;15 оказываются нежизнеспособны .
Одной из возможных причин несоответствия теоретически ожидаемого и реального числа анеуплоидии в потомстве гетерозигот по Робертсоновским транслокациям может быть однородительская дисомия (ОРД) - присутствие в кариотипе плода двух продуктов мейоза одной хромосомы от одного из родителей и отсутствие нормального гомолога от другого ^м. раздел 3.2.5). В настоящее время ОРД рассматривается в качестве одного из важных факторов патологии постнатального развития, связанной с дисбалансом импринтированных генов - болезни импринтинга . Постзиготическая коррекция числа хромосом путем элиминации непарного гомолога на ранних стадиях дробления представляется весьма вероятным механизмом ОРД у таких эмбрионов. Поэтому наличие

Робертсоновской транслокации в кариотипе плода особенно в сочетании с мозаицизмом хромосом в плаценте следует рассматривать как важный аргумент в пользу необходимости исключения ОРД у плода (см. главу 9).
Таким образом, вероятность несбалансированного кариотипа у пло- да/ребенка у носителей Робертсоновских транслокаций ниже теоретически ожидаемой и определяется спецификой хромосом, вовлеченных в центрическое слияние. Робертсоновские транслокации не вызывают других аномалий кариотипа и, как правило, не приводят к дисбалансу хромосом, не вовлеченных в центрическое слияние. Наличие Робертсоновской транслокации у плода в сочетании с ограниченным плацентой мозаицизмом хромосом указывает на возможность однородительской дисомии, которая может явиться причиной серьезных нарушений на постнатальных стадиях развития.